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Two-dimensional noise-sustained structures in optical parametric oscillators

Marco Santagiustina, Pere Colet, Maxi San Miguel, and Daniel Walgraef*

Instituto Mediterraneo de Estudios Avanzados, IMEDEA† (CSIC-UIB), E-07071 Palma de Mallorca, Spain
~Received 17 February 1998!

The problem of two-dimensional~2D!, transverse, noise-sustained pattern formation is theoretically and
numerically studied, in the case of an optical parametric oscillator, for negative signal detuning. This gives a
complete analysis of a 2D, convective, pattern forming system which is also relevant to more general 2D
physical systems. For the optical parametric oscillator, the transversal walk-off due to the nonlinear crystal
birefringence, exploited to phase match the frequency down-conversion process, turns the instability to con-
vective up to a certain threshold. In this regime, noise-sustained patterns can be observed. These structures are
a macroscopic manifestation of amplified microscopic noise which, in the context of optics, can be of quantum
nature. Directly observable properties of the near and far field as well as statistical properties of the spectral
intensity help to distinguish noise- from dynamics-sustained structures. Moreover, the analysis indicates that
the walk-off term breaks the rotational symmetry of the 2D model. This causes a preferential selection of the
stripe orientation, which would be otherwise random, the modulus of the wave vector being the only restricted
value. At the convective threshold an entire set of spatial modes becomes unstable, whereas the threshold of
absolute instability depends on the relative orientation of the mode. Beyond the threshold for absolute insta-
bility, this causes the coexistence, in the linear regime of evolution, of modes that are absolutely unstable, and
others that are only convectively unstable. The numerical solutions of the dynamical equations of the system
under study confirm the analytical predictions for the value of the instability thresholds and the kind of pattern
selected. Moreover, they allow us to investigate the nonlinear regime showing qualitatively the coexistence of
modes with different types of instability and giving a quantitative characterization of the transition from
noise-sustained to dynamics-sustained structures.@S1063-651X~98!14308-8#

PACS number~s!: 42.65.Sf, 42.50.2p, 42.65.Yj
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I. INTRODUCTION

Pattern formation in nonlinear optical systems is the
ject of an intense investigation, both theoretical and exp
mental@1#. Spontaneous pattern formation has been obse
or predicted in many different nonlinear optical systems s
as nonlinear Kerr media in resonators@2,3#, Kerr slices in
single mirror feedback configuration@4–7#, two-level atoms
@8#, atomic and molecular gas media@9,10#, second harmonic
generation@11#, and optical parametric oscillators@12,13#.
The range of observable patterns and parameter range o
servation are highly enhanced when considering the e
degree of freedom associated with the polarization of li
@14–17#. Stripes, squares, hexagons, and more complic
stationary and dynamical patterns have been observed
characterized in the publications. A description of many
these phenomena in terms of universal amplitude equat
gives the link which interconnects the optical patterns w
those similarly observed in other systems@18#.

Nowadays, optical parametric oscillators~OPO’s! are
among the most attracting optical devices where pattern
mation is studied@12,13,19,20#, and the recent experimenta
observation@21# of spatial patterns in quadratic media is ve
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encouraging. This interest stems from the foreseen app
tions in the field of all-optical processing and storage of
formation @1#, as well as from the fact that OPO’s can ge
erate squeezed@22# and other nonclassical states of lig
@23#. For the latter reason they are thought to be a para
matic example of the interface between classical and ma
scopic quantum patterns@24#. In this regard, there are recen
studies which focus mostly on the quantum correlations
sociated with a pattern forming instability@24–29#. There,
particular attention is paid to the noisy precursors obser
below the threshold of the instability, because they are s
tially organized manifestations of quantum fluctuations. T
situation is, from the classical viewpoint, conceptua
equivalent to the convection experiments of Ref.@30#, aimed
at characterizing thermal fluctuations. In both cases spa
correlation are investigated very close to the instabi
threshold where fluctuations are weakly damped. In the c
sical case, features in the correlation functions such as n
squeezing under the minimum classical level are obviou
absent. The analogy with other experiments in classical fl
dynamics@31# has suggested@32# that nonlinear optical sys
tems can present macroscopic, noise-sustained struct
above the threshold of the instability in the so-called conv
tively unstable regime@33#. This phenomenon refers to th
situation when local perturbations of the steady state can
advected much rapidly than their rate of spreading. In t
case macroscopic patterns can arise and be observed o
noise is continuously applied, the pattern now being reg
erated at any time, hence the name noise-sustained s
tures. These structures are the result of noise amplificat
with magnification factors of several order of magnitude

m-
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They are thus interesting candidates for the study of quan
correlations in spatially structured systems. This situation
distinct from that of the noisy precursors, where noise
selectively enhanced, but not amplified, by the nonlinear s
tial filtering effect.

Noise-sustained structures were predicted and chara
ized in optical passive cavities filled with a nonlinear Ke
medium and pumped by a tilted external beam@32#. In this
situation the advection motion is induced by input pum
beam tilting @34#. Here we show that the convectively un
stable regime and thus noise-sustained structures are
found in type-I degenerate OPO’s for positive signal det
ings. The present extension includes important featu
which are either peculiar to the OPO or of wider interest
the study of convective instabilities in other physical sy
tems.

In this paper a transversal two-dimensional~2D! model is
considered for the OPO. Note that the 1D model of Ref.@32#
was justified by both theoretical@2,34# and experimental@6#
results on the drift instability in nonlinear Kerr devices sim
lar to the one we considered. For the OPO this simplificat
is generally avoided, and the investigation is directed tow
2D transverse devices@12,13,19,20#. We want to stress that
in spite of the particular choice of the OPO, the features t
are found belong very generally to the whole class of 2
convective, pattern forming systems. To the best of
knowledge the generation of noise-sustained structures
never studied before in a 2D system, though the theory
convective and absolute instability in higher-dimensio
systems was developed in plasma physics@35,36#. We will
show that pattern formation is highly affected by the adv
tion term in the convectively unstable regime and also t
this is an important result in the absolutely unstable regim
In fact, the advection breaks the rotational symmetry of
system, and this causes a preferential orientation of
stripes, which can be explained only if the analysis is carr
out taking into account the possible convective nature of
instability.

It is also worth noting that in the specific case of OPO
the convective regime can hardly be neglected because
fringent crystals are used to phase match the do
conversion process. As known, the anisotropy of the med
implies that a transverse walk-off effect among the bea
due to the misalignment of the Poynting vectors@37–39#,
can occur. This means that an advection term is presen
the governing equation, even when the pump beam is alig
with the cavity. Moreover the typical walk-off angle can o
ten be larger than a few mrad and thus this effect is expe
to overcome finite-size locking effects too@40#.

This paper is organized as follows. In Sec. II we pres
the model used to represent a type-I degenerate OPO.
tion III is dedicated to a linear stability analysis, which tak
into account the possible convective nature of the instabi
In Sec. IV, we analyze the generation of the noise-susta
convective structures and characterize the typical feature
the pattern. A discussion about the possible the experime
observation of such structures and the conclusions are
sented in Sec. V.

II. GOVERNING EQUATIONS

In this section we introduce the set of semiclassical eq
tions we use to model the OPO. Such a device may con
m
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for example, of a ring resonator with flat mirrors, filled wit
a quadratic (x (2)) nonlinear medium and pumped by an e
ternal laser source of frequencyvp . The output mirror al-
lows a fraction of the internal field to leak out, for detectio
in the near field~NF, i.e., close to the output mirror! and far
field ~FF, far from the device! configurations. In this system
the FF is the spatial Fourier transform of the NF. Und
suitable experimental conditions~which we will soon
specify! together with the residual input beam atvp , two
additional frequency componentsvs andv i ~usually called
the signal and the idler! can be detected at the output po
They are generated by the nonlinear interaction which ta
place inside the crystal: light quanta of the pump beam
down-converted tovs ~signal! andv i ~idler! photons via the
parametric process, which is sketched in Fig. 1. This proc
is highly efficient when two conditions are satisfied@37,39#:

vp5vs1v i , ~1!

kp~vp!5ks~vs!1k i~v i !. ~2!

These represent, respectively, the conservation of the en
and momentum@41# of the photons involved in the interac
tion. In the remainder of the paper we will assume the dow
conversion process to be frequency degenerated, i.e.vs
5v i5v0 ~hereafter the fundamental harmonic, FH!. Hence
Eq. ~1! implies that vp52v0 ~hereafter the second ha
monic, SH, or simply the pump!.

As for Eq.~2!, it means that the process requires a pha
matching condition for the wave vectors which can be
written ~taking into account the frequency degeneracy! in the
form

np~2v0!5
ns~v0!1ni~v0!

2
, ~3!

wherenp,s,i(v) are the refractive indexes of the pump, th
signal, and the idler, which in general depend on both
frequency and the polarization of the fields. The pha
matching condition~3! cannot be trivially satisfied for an
arbitrary choice of the frequency and of the nonlinear m
dium. Quite often birefringence is exploited, since it allow
one to compensate for the index frequency dispersion
means of orthogonally polarized waves@37,39#. In fact, in a
uniaxial birefringent crystal there exist two preferential o
thogonal linear polarizations, propagating independen
with a different refractive index~for a discussion of the nor
mal modes of a birefringent medium; see, for example R
@42#!. Thus there are two types of phase-matching conditi
@37,39#: one involves polarization nondegenerate, dow

FIG. 1. Schematic representation of the frequency dow
conversion process
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PRE 58 3845TWO-DIMENSIONAL NOISE-SUSTAINED STRUCTURES . . .
converted beams, i.e., the polarization ofvs is orthogonal to
that of v i and is usually referred to as the type-II matchin
The type-I phase matching, conversely, involves polariza
degenerate output photons, i.e., the signal and the idler h
the same polarization which is orthogonal to that of t
pump in order to satisfy Eq.~3!. We will consider only this
second case, because type-I phase matching is a com
experimental setup in second harmonic generation~SHG!
and OPO’s@37,39,43#, and because this reduces the num
of equations which govern the phenomenon. In this case

np~2v0!5ns~v0!5ni~v0!5n. ~4!

The aim of reviewing these well known features of the pa
metric down-conversion is to stress that this process is c
monly obtained by means of birefringent media and ortho
nally polarized beams, a fact that brings importa
consequences. In fact, except for the particular case in w
the propagation takes place along an optical axis~noncritical
phase matching!, one wave is no longer polarized in a no
mal mode. It can be demonstrated that for this beam, ca
extraordinary, the Poynting vector is not parallel to t
propagation direction~again see Ref.@42# for details!. Con-
versely, the other orthogonally polarized beam still has
Poynting vector parallel to the propagation direction, and
thus defined as an ordinary ray. Therefore, the ordinary
extraordinary beams go slightly misaligned during propa
tion, and they walk off one from each other@37–39,42#.

The walk-off effect, though considered for modelin
pulse generation in OPO’s@44# and solitary wave propaga
tion in SHG @45#, has been neglected in the previous ana
ses of transverse structure formations in the OPO’s. In p
ciple it seems logical that this term could be neglected for
smallness in the noncritical or quasi-non-critical pha
matching ~propagation direction close to an optical axis!.
However, in the more general case and despite its smalln
this term can be of fundamental importance as soon as
presence of noise is considered. The effect of the transv
walk-off is in fact equivalent, as it appears in the dynami
equations, to the pump beam tilting of the Kerr case@34#. As
demonstrated in Ref.@32#, a convection term, like the on
introduced by beam tilting or walk-off effects, gives rise to
convectively unstable regime, where noise-sustained st
tures can be observed. Moreover, we will show that in a
system this term causes a preferential pattern orientatio
the absolutely unstable regime. This effect can be explai
only by taking into account the mode selection mechan
introduced by the convectionlike term.

The equations governing the time evolution of the SH a
FH field envelopes in the resonator can be obtained in
steps. First we can derive, in the slowly varying envelo
approximation ~SVEA!, the propagation equations in th
nonlinear medium, for example by means of a multip
scales expansion~see also Ref.@39#!. Then, by following the
guidelines of Ref.@8# we can find, in the mean-field limi
~MFL!, the time evolution equations when the medium fills
ring resonator. In a ring cavity, photons are generated in
crystal and moves transversally with a walk-off angle th
can be typically of the order of 0.1 mrad. So the actual d
placement attained after the propagation in the crystal is v
small. Outside the crystal the waves are parallel, and thus
.
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signal generated is reinjected collinearly with the pump
the next pass, but slightly displaced in the walk-off directio
The mean-field approximation is thus averaging out the
fect of this continuous space displacement of photons.
have performed all steps and finally obtained the followi
equations for the envelopes of the SH„A0(x,y,t), ordinary
polarized… and FH„A1(x,y,t), extraordinary polarized… ~see
also Refs.@12,13,19,46#!:

] tA05g0@2~11 iD0!A01E01 ia0¹2A012iK 0A1
2#

1Ae0j0~x,y,t !, ~5!

] tA15g1@2~11 iD1!A11r1]yA11 ia1¹2A11 iK 0A1* A0#

1Ae1j1~x,y,t !, ~6!

wherex and y are the transversal spatial dimensions,t the
time, and the coefficients are defined as follows. The de
rates of the SH and FH fields in the cavity areg0,1
5v0,1T0,1/L, wherev0,1 are their group velocities,T05T1
5T!1 are the output mirror transmission coefficients, andL
is the cavity length. The scaled cavity detunings are

D05~vc022v0!/g02DkL/T0 , ~7!

D15~vc12v0!/g1 , ~8!

wherevc0,c1 are the cavity resonances closest to the SH
FH frequencies. The second term in Eq.~7! takes into ac-
count a possible phase mismatchDk of the parametric inter-
action. In order to be consistent with the MFL this term mu
be small, i.e.,Dk!1/L, so it can be included in the detunin
parameter as shown. Note also that the bandwidth of
phase matching is much larger that the cavity modes
thus, if present, the mismatch can be considered cons
Therefore, the limits of validity of this model are those set
the SVEA-MFL approximation~see Ref.@8# for a detailed
definition! plus the additional condition of a small phase m
match. Here, for the sake of simplicity, we will suppose th
Eq. ~4! holds and thusDk50. The coefficientsa0,1
5L/(2k0,1T0,1), where k0,15kp,s , represent diffraction.
They are related bya05a1/2 since k052k1 as a conse-
quence of Eq.~4! and the frequency degeneracy, and beca
we have previously setT05T15T. The coefficient r1
5Ltan(a1)/T1, wherea1 is the angle between the SH an
FH Poynting vectors induced by the birefringen
@37,39,42,45#, is the walk-off parameter. The termE0(x,y,t)
is the input SH pump andK05v0xeff

(2)L/(ncT) the nonlinear
coefficient, wherexeff

(2) is the effective~quadratic! susceptibil-
ity and n is defined by Eq.~4!.

Finally, the last terms in the equations are compl
Gaussian white noise with zero mean (^j0,1(x,y,t)&50) and
correlations ^j i(x,y,t) j j* (x8,y8,t8)&52d i , jd(t2t8)d(x
2x8)d(y2y8) i , j 50,1. In a linearized version of Eqs.~5!,
and~6!, they describe quantum noise in the Wigner repres
tation, as shown in Ref.@28#. Here they can account fo
thermal and input field fluctuations as well.
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III. CONVECTIVE AND ABSOLUTE LINEAR
INSTABILITY ANALYSIS

This section presents the linear instability analysis of
steady-state solution of Eqs.~5! and ~6! which corresponds
to the OPO below the threshold of signal generation. T
will be carried out according to the theory presented in Re
@33,35,47# in order to be able to discriminate convectiv
from absolute instabilities.

For the sake of clarity, we first recall the definition of th
convective instability for a 2D system. In general, a stea
state is defined to be absolutely stable~unstable! if a local-
ized perturbation decays~grows! with time. In Fig. 2~a! and
2~b!, we show these two situations for a system in wh
advection is also present along they axis. However, there is
a third possibility: the perturbation may grow~unstable! but
the advection velocity could overwhelm the speed of spre
ing in the direction of the advection@Fig. 2~c!#. In this case
the perturbation eventually leaves the system which retu
to the steady state. This type of instability is defined to
convective.

Clearly, the definition depends on the choice of the s
tem of reference; in fact, by choosing a reference frame m
ing at the speed of the perturbation peak we would alw
define a system to be absolutely stable or unstable. Howe
in finite physical systems, there is always a preferred re

FIG. 2. Pictorial definition of the stable and unstable regimes
a two-dimensional system with a transversal walk-off. The l
~right! column is a lateral~top! view of a perturbation of the stead
state. Dashed~solid! curves represent thet50 (t.0) conditions for
~a! the stable,~b! the absolutely unstable, and~c! the convectively

unstable regimes. At the fixed positionrW05(x0 ,y0) the field ampli-
tude~a! decays,~b! grows, and~c! decays due to the strong adve
tion compared to spread.
e

is
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s
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s
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r-

ence frame, which makes the above definition unambiguo
In the OPO, for example, the pump laser beam is presen
a well defined region of space, and thus it can be taken as
fixed frame. The FH field moves transversally due to t
walk-off effect, and thus a perturbation of the FH mig
leave the pump region at some time. Clearly, outside t
portion of space there is no amplification via the dow
conversion process, and the FH fades because of m
losses.

Thus we proceed by analyzing the parameter range
which the system of equations~5! and ~6! is stable, convec-
tively unstable, or absolutely unstable. Whene0,150, the
equations have the following uniform steady state:

A05
E0

11 iD0
, A150. ~9!

To determine when the latter becomes unstable we can
earize Eqs.~5! and~6! close to the steady state, and look f
solutions of the kind exp(iqW•rW1lt), where qW is a two-
dimensional vector with real components,qW 5(qx ,qy)PR 2

and rW5(x,y). It turns out that the steady state becomes
stable only along the FH component (A1) of the eigenvector
and thus the analysis reduces to the study of the linear
form of Eq. ~6! with A0 given by Eq.~9! @12,13,19,46#. The
dispersion relation obtained is

l6~qW !5 iqyr1216AF22@D11a1~qx
21qy

2!#2, ~10!

whereF25K0
2uE0u2/(11uD0u2) is a normalized pump inten

sity.
The determination of the nature of the instability enta

the estimation of the linearized asymptotic behavior of a
neric perturbation of the FH steady state, sayc, which is
given by

c~x,y,t !5E
2`

1`E
2`

1`

dqxdqyc̃~qx ,qy,0!exp@ i ~qxx1qyy!

1l~qx ,qy!t#, ~11!

where c̃(qx ,qy,0) is the initial perturbation in the spatia
wave-vector space, andl(qx ,qy) is the eigenvalue with larg-
est real part~plus sign!.

According to the definition given above~Fig. 2!, the sys-
tem is ~absolutely! stable whenuc(rW01vW t,t)u→0 as t→`

for any arbitrary fixedrW0 and any velocityvW @33#. It is easy
to demonstrate that the condition to have absolute stabilit
Re„l(qx ,qy)…,0 for any (qx ,qy)PR 2, because it yields an
integral ~11! decaying with time.

The modes (qx
m ,qy

m) with the largest growth rate Re(l)
are those of modulus

u~qx
m ,qy

m!u5qc5A2
D1

a1
~12!

if D1,0, and (qx
m ,qy

m)5(0,0) otherwise. In the following
we treat the caseD1,0 where the maximum of Re(l) is
reached on a ring of modes in the wave-vector space@48#.
The threshold for parametric down-conversion takes pl

n
t
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when Re(l)50, i.e., whenF251, and above threshold for
mation of a stripe pattern is expected@12,13,19,20#.

When Re„l(qx ,qy)….0 for some wave vector (qx ,qy),
there can be two situations. We can either have t
uc(rW,t)u→` for any arbitrary value ofrW ~absolutely un-
stable! or thatuc(rW0 ,t)u→0 anduc(rW01vW t,t)u→` for some
velocity vW and any arbitraryrW0 ~convectively unstable!. Note
that for determining the asymptotic behavior of the pertur
tion we only need to evaluate integral~11! for those values
of (qx ,qy) for which Re(l„qx ,qy)…>0, the other modes giv
ing no contribution~they are surely decaying!. The extrema
of the surface of integration are thus identified by the loc
the real plane (qx ,qy) where Re(l)50. In order to illustrate
the integration technique, we first consider the analysis w
only one spatial dimensionqW→q. The complex function of
real variablel(q) can be analytically continued over th
complex planek in the form l(k/ i ). The previous real do-
main of definition corresponds to a purely imaginaryk.
Then, using the Cauchy theorem, we can equivalently ev
ate Eq.~11! along any contour in the complex wave-vect
plane connecting the extrema of integration, provided t
the integrand has no singularities in the area bounded by
original and the new contour. In particular we can evaluat
for a contour which crosses a saddle pointks in the complex
plane, along the direction of the steepest descent.
asymptotic behavior of the integral is then given by the va
of the exponential part of the integrand calculated at
saddle point. Eventually, if Re„l(ks)….0 this term diverges
and the instability is absolute~see an example in one dimen
sion, Taylor-Couette flows in Ref.@49#!. In two dimensions
we can proceed in a similar way and the integral yields
absolutely unstable solution if the following conditions a
satisfied:

Re„l~kx
s ,ky

s!….0, ~13!

Re„¹kW
2
l~kx ,ky!uk

x
s ,k

y
s…>0, ~14!

where (kx
s ,ky

s), defined by

¹kWl~kx ,ky!uk
x
s ,k

y
s1 i

rW

t
50, ~15!

is the saddle point in thekW complex space@35#. Taking rW

5rW01vW t, for t→` the saddle is given by¹kWl(kx ,ky)uk
x
s ,k

y
s

1 ivW 50. In the fixed reference frame of the pump beamvW
50, and so

¹kWl~kx ,ky!uk
x
s ,k

y
s50. ~16!

To summarize: if Re„l(qx
m ,qy

m)…,0, where (qx
m ,qy

m) is
the loci ~in R 2) of the maxima of Re(l) the system is ab-
solutely stable; if Re„l(qx

m ,qy
m)….0 and Re„l(kx

s ,ky
s)…,0

where (kx
s ,ky

s) is the saddle point~in C 2), it is convectively
unstable and it is absolutely unstable if Re„l(kx

s ,ky
s)….0.

For the OPO, by replacing (qx ,qy) with (kx ,ky)/ i , and
taking into account Eq.~12!, we can rewritel1 of Eq. ~10!
as
at

-

h

u-

t
he
it

e
e
e

n

l~kx ,ky!5211r1ky1AF22a1
2~qc

21kx
21ky

2!2, ~17!

and thus the saddle is found through Eq.~16! at

2a1
2@qc

21~kx
s!21~ky

s!2#kx
s

AF22a1
2@qc

21~kx
s!21~ky

s#2!2
50,

r12
2a1

2@qc
21~kx

s!21~ky
s!2#ky

s

AF22a1
2@qc

21~kx
s!21~ky

s#2!2
50, ~18!

For r150 the saddle solution of Eq.~18! coincides with Eq.
~12!, and therefore the criterion of convective and absol
instability coincides. Forr1Þ0, the saddle is given by

kx
s50, r12

2a1
2@qc

21~ky
s!2#ky

s

AF22a1
2@qc

21~ky
s!2#2

50. ~19!

The second of Eq.~19! was numerically resolved for a com
plex ky

s together with Re„l(0,ky
s)…50 to calculate the value

of F at the absolute instability threshold. The result is show
as a function of the FH detuningD1, in Fig. 3.

When the OPO is at threshold (F51) andr1Þ0, all un-
stable modes are convective; if the pump amplitude is
creased, the first mode to become absolutely unstable s
fieskx50 @the first of Eqs.~19!#. The advection term break
the rotational symmetry and stripes parallel to thex axis are
always the selected mode. In fact, from the value of
saddle given by Eq.~19! the selected wave vector can b
determined@50,51#: in particular, we obtain the condition
qx50. Note that this asymmetry cannot be ascribed to
change in the growth rate of the most unstable modes wh
is equal for all the modes on ring~12!. The mechanism
which creates this selective action is related to the advect
spreading balance peculiar to the convective regime, as
mentioned in Sec. II. Moreover, as at the absolute thresh
the only absolutely unstable modes are those close

FIG. 3. Stability diagram as a function of the FH detuning f
the steady-state solution~9!. In the region below the solid line the
solution is always stable; the dashed curves represent the abs
instability thresholds for different values of the walk-off paramet
~a! r150.25,~b! r150.2, and~c! r150.15. The region between th
solid and dashed lines is the domain of convective instability fo
given value ofr1. In particular, we shadowed the region referring
r150.15~other parameters:g05g151 anda150.25). The star~* !
and the plus~1! signs indicate the parameters used for the num
cal solutions of Figs. 4 and 5, respectively.
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qx50, it is reasonable to assume that the remaining mo
should be still convectively unstable. It is then interesting
address the question of the coexistence of absolutely
stable and convectively unstable modes. In the next p
graphs we investigate, through a simple approximated an
sis, this phenomenon. The predictions are qualitativ
confirmed by numerical solutions which are presented
Sec. IV ~see Fig. 6!.

First, note that the position of the saddle (kx
s ,ky

s), and thus
of the threshold of the absolute instability, depends on
coefficient of the advection termr1 @second of Eqs.~19! and
Fig. 3#. In particular, the fact that the faster the advection
larger the absolute instability threshold agrees with the in
tive definition we gave of the convective regime~see Fig. 2!.
The fact that the instability turns to be absolute when the
of spreading of a perturbation is larger than the advection
be shown by means of a simplified mathematical analy
Let’s consider Eq.~11! again, and make a Taylor expansio
of the eigenvalue~10! around a particular wave vector of th
ring given by Eq.~12!: qx

m5qccosu, qy
m5qcsinu, where the

variable 0,u<p/2 represents the angle between (qx
m ,qy

m)
and the axis (qx,0). If the expansion is truncated at the se
ond order in the differencesqx2qx

m andqy2qy
m , the integral

~11! can be solved analytically~see the 1D examples in Re
@47#! and the condition for the absolute instability becom

Re„l~qx
m ,qy

m!…1
~y01r1t !2

2Re„lyy~qx
m ,qy

m!…t2
.0, ~20!

wherelyy5d2l/dqy
2uq

x
m ,q

y
m. Finally, upon substitution oflyy

calculated through Eq.~10! and ast→`, we obtain

211FS 12
r1

2

8a1
2qc

2sin2u
D .0. ~21!

Equation~21! shows clearly that the larger the group veloc
r1 the larger the threshold value ofF for the absolute insta
bility. This approximated solution, valid when the Tayl
expansion can be truncated at the second order and foru not
too close to 0, is in agreement within a few percent, with
exact resolution given in Fig. 3 foru5p/2. Moreover, it
confirms that the modeu5p/2 (0,qy) has the lowest thresh
old for absolute instability and indicates that for a norm
ized pump amplitudeF above the threshold of absolute in
stability the modes for which

u.uc5arcsinS r1

2a1qcA2
A F

F21D ~22!

are absolutely unstable, while the others are still conv
tively unstable.

The quantity Re„lyy(qx
m ,qy

m)…t can be interpreted@47# as
the mean-square spatial spread of the perturbation in the
vection direction. It is then clear that the mode withu
5p/2 spreads faster than the modes with smalleru, and
hence, although all modes on the ring have the same gro
rate Re„l(qx

m ,qy
m)…, there are some modes which are p

ferred through a spreading selection mechanism. Eventu
the rotational symmetry is broken.
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To summarize, the results of this section are the follo
ing. In the OPO’s the presence of the walk-off term induc
the existence of a convectively unstable regime, just ab
the OPO threshold of signal generation. In this regime p
turbations are advected faster than they spread. The walk
term does not change the growth rate of modes but bre
the rotational symmetry, because the critical modes (qx

m ,qy
m)

have different spreading velocities in the direction of t
advection. This causes the modes withqx50 to be preferen-
tially selected both in the convectively and absolutely u
stable regimes. Moreover, the symmetry breaking implies
coexistence of absolutely and convectively unstable mo
in a certain region of parameters in the absolutely unsta
regime.

Finally, we want to stress that these results, obtained
the specific case of an OPO, are actually very general
could be extended to pattern formation in similar 2D, co
vective system. To our knowledge, this is the first exam
of a complete study of the formation of convective structu
in 2D systems.

IV. CHARACTERIZATION OF THE NOISE-SUSTAINED
STRUCTURES

Noise-sustained convective structures, as well as feat
associated to the 2D convective model, are presented in
section as they result from the numerical solutions of
dynamical equations~5! and ~6!. Noise-sustained pattern
can be expected in the regime of convective instabil
where no dynamics-sustained structure can be observed
cause of the overwhelming advection. In practice, the no
acts as a perturbation which, being continuously applied,
generates a new pattern at any time.

We show the integration of Eqs.~5! and ~6! with a noise
intensity e0,151.5310211 and with the same integratio
scheme as in Ref.@32#. The system size was 3203320 scaled
spatial units, and the pump was a super-Gaussian be
E0(x,y,t)5Emexp@2„(x21y2)/s0

2
…

m/2#, with m55 ands0

5112; the grid was of 5123512 points and the time ste
0.01 normalized units. The super-Gaussian beam is flat
and this allows us to apply the results of the linear stabi
analysis which are strictly valid only for a uniform stead
state. We also setg05g151, D051,D1520.25, a05a1/2
50.125, K051, and r150.15. This is equivalent to hav
scaled, the time with the decay rate, the space with a mult
of the diffraction length, and the amplitude with the nonli
ear coefficient. Under this, or similar scaling, the equatio
become dimensionless; thus all quantities in the figures
dimensionless as well. Note that the parameters of the si
lations were chosen in order to make the visualization of
results simpler, but they are not critical. Noise-sustain
structures were also found with smaller beams, larger
smaller advection terms, and different SH and FH detuni
and diffraction coefficients, close to the one presented.

In the figures we do not show the whole integrati
window, but only the central parts. For the NF the spa
region where the generated FH is appreciably inte
(uxu,103.75,297.5,y,110) is shown; in the FF only the
region of low spatial wave vectors around the unstable r
is interesting (uqxu,1.7,uqyu,1.7). Moreover, we did not
show the SH, because this field is stable.



n
n-
pa
t
th

os
de
e

p
fe
o

-
we

w-
rve
im-
ori-
the
tion

the
tern

d the

nd
e

me

y.

PRE 58 3849TWO-DIMENSIONAL NOISE-SUSTAINED STRUCTURES . . .
For a normalized pump amplitudeF.1.06 (Em51.5)~the
star in Fig. 3! the system is predicted to be absolutely u
stable. In fact, after a transitory in which low intensity, ra
domly oriented stripes appear, we obtain the NF and FF
terns shown in Figs. 4~a! and 4~b!. The NF structure is no
static but, because of the advection, drifts upward at
speedr1. The stripes are mostly oriented parallel to thex
axis, in agreement with the prediction that this is the m
rapidly spreading mode in the system. In the circular bor
where the pump intensity drops, stripes bend; this eff
might be explained as a boundary effect@13,18#. Note that
the pattern is occupying the whole region where the pum
present; the stripes are well defined, and almost no imper
tions can be observed. These characteristics are very c

FIG. 4. The~a! near-field and~b! far-field intensity images of
the pattern in the absolutely unstable regime are shown (t51500)
in a linear gray-scale. The initial condition is zero for the FH a
the steady-state solution for the pump beam; the random nois
the intensity, e05e151.5310211, is continuously applied. The
other parameters as in Fig. 3~* !, andD051.
-

t-

e

t
r

ct

is
c-
m-

mon features of the dynamics-sustained patterns.
For a normalized pump amplitude F.1.025

(Em51.45)~the cross in Fig. 3! all unstable modes are con
vective and, after a transitory similar to the previous case,
obtain the structure presented in Figs. 5~a! and 5~b!. The
pattern is not stationary but drifts upward, as before. Ho
ever, differently from the absolutely unstable case, obse
that the horizontal orientation is less marked, and some
perfections, where stripes bend and turn out not to be h
zontal, exist. Moreover, the pattern does not invade all
system, but rather it grows appreciably at a random posi
well inside the pumping region. As noted@32#, noise inten-
sity could be experimentally measured by characterizing
average and dispersion of the spatial delay in the pat
growth, as done in fluid dynamics experiments@31#. All
these features are typical of a noise-sustained pattern, an

of

FIG. 5. Same as Fig. 4 for the convectively unstable regi
~1 of Fig. 3!. The gray scale of~a! is the same as that of Fig. 4~a!;
the far field in~b! is scaled to its maximum to enhance the visibilit
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analogy with the 1D Kerr case@32# is clear. In this 2D case
the pump amplifies a spatial structure generated from
noise at the bottom of the window. While the amplificatio
goes on, the stripes, initially oriented randomly, drift upwa
and tend to rearrange along the predicted preferred w
vector. If the noise source is turned off, we also obser
that the structure disappears in agreement with the pre
tion.

The observation of the FF also reveals the differen
among a noise- and a dynamics-sustained pattern. The F
Fig. 5~b! is made of two broadened arcs of the ring, and t
qualitative behavior does not change even at larger tim
since it is due to the fact that noise continues to excite
modes, though some (u.0) leave the system more rapid
than others (u.p/2). Conversely, Fig. 4~b! shows much bet-
ter defined and intense spots close to the modes witu
.p/2. These modes, as we will show below, are the ab
lutely unstable ones, and their growth overwhelms that of
modes which are convectively unstable.

Thus the results of the numerical integrations indicat
behavior in agreement with the theory with respect to
different behavior of the convectively and absolutely u
stable modes. As stated, if the pump amplitude is sligh
above the absolute instability threshold, we predicted t
both absolutely and convectively unstable modes coex
The latter group is expected to finally decay in intensity d
to the advection while the absolutely unstable modes k
growing for longer times. Eventually, the mode competiti
should lead to the selection of a single orientation in
pattern@18#.

The phenomenon of modal coexistence discussed in
III is well captured in Fig. 6, where we show the total inte
sity content of the modes 0,u,p/2 in an absolutely un-
stable situation. Note how a well defined set of modes~for
small angles! tends to grow initially but disappears on
larger time scale, due to its unstable but convective nat
Absolutely unstable modes, close to the most rapidly spre
ing modeu5p/2, gather a much larger intensity and com
pete in the fully nonlinear regime. We repeated the num
cal integration with different random initial conditions an
for different values of the pump amplitude above the p

FIG. 6. Intensity distribution for the different spatial modes a
function of the angleu and the time as it results from a numeric
integration. The intensity content of the modes withu closer to zero
tends to decrease because of the overwhelming advection, i.e.,
modes are convectively unstable. Conversely the most rap
spreading modes, with largeru, are absolutely unstable and ca
grow. The parameters are as for Fig. 3~* !, except fore05e150 ~no
noise!; the FH field was initially set to a small intensity, rando
condition.
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dicted absolute threshold, finding the same qualitative beh
ior. Unfortunately, a rigorous criterium to identify the critica
angleuc could not be found from figures like Fig. 6, becau
of the strong influence of the random initial condition in th
dynamics. Nonetheless, we have shown that the stab
properties of different spatial modes depend on the rela
value of the angleu. Above a certain critical angleuc modes
are absolutely unstable while below they are convecti
Thus the prediction of Eq.~22! in this regard must be take
qualitatively and not quantitatively, i.e., it is just an analy
cal indication of the coexistence of convective and abso
modes.

As in Refs.@31,32#, the easiest way, also from an expe
mental viewpoint, to distinguish noise-sustained from det
ministic structures is through the time spectral analysis. T
is shown in Fig. 7; this picture presents the fast Fourier tra
form of the waveforms that could be recorded by placing
field detector in the NF, where the pattern reaches its n
linearly saturated value~in the example we chose the poin
x50, and y56.75), both for the convectively (F.1.025)
and absolutely (F.1.0465) unstable regimes. The differen
in the spectral broadening is remarkable; the absolutely
stable pattern spectrum has a variance equal to the frequ
resolution of the numerical integration (531024), while the
convective spectrum has about 331022, i.e. almost two or-
ders of magnitude of difference. The average frequencies
V50.0255~solid curve! andV50.0239~dashed curve!. The
former is in good agreement with the value that can be p
dicted analytically by means of the results of Sec. III. In fa
through Eqs.~17! and~19! it is also possible to evaluate th
~real! wave vector at the absolute instability threshold whi
is qy.1.09, and thusV5r1qa /(2p)50.026. As for the
convective case the average frequency is smaller becau
this regime modes withqxÞ0 can be still excited~see Fig.
5!, and this causes stripe bending and eventually a decr
in the oscillation frequency. Note that this feature is due
the fact that a 2D convective system is considered, an
would be absent otherwise. The transition from one regi
to the other is sharp, as we demonstrated in Fig. 8, where
variances of spectra obtained in different spatial positions
well as their average, are shown. The large spread obse
in the variance values is due to the relatively short time

ese
ly

FIG. 7. Spectral intensity of the field amplitude at a fixed spa
position (0,6.25) forF.1.0465~solid curve! andF.1.025~dashed
curve!. The noise level was the same as that of Figs. 4 and 5.
dashed intensity spectrum has been multiplied three times in o
to make it visible in the scale of the solid one.
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integration. The governing equations were in fact in this
ample integrated for 2000 time units, which is already
highly demanding computational problem for such large
systems on a high-speed workstation. The position of
transition from the convectively to the absolutely unsta
regime is in very good agreement with the value predicted
the analysis.

Note @Figs. 4~a! and 5~a!# that both the dynamics- an
noise-sustained patterns obtained are much more intense
the noise level. In our numerical integration we found up
11 orders of magnitude of intensity amplification. In th
regard it is worth pointing out that, in principle, with a
arbitrarily large system~in the direction of the advection! the
factor could also be arbitrarily large. Of course, in the case
the OPO the beam size of a real laser pump has physica
technological constraints to be taken into account, as we
discuss below.

V. FINAL DISCUSSION AND CONCLUSIONS

We dedicate this final section to a discussion of the pr
lems related to a possible experimental observation of no
sustained structures, and to present our conclusions.
typical parameter values with the current, available mater
and technology can be roughly estimated as follows. Non
ear crystals~see, for example, Refs.@42#, Table 19.6-1, and
Ref. @52#! can have a nonlinear coefficientxeff

(2) up to the
order of 100 pm/V. Let us set the refractive index atn
.3.5 and a crystal length ofL58 mm; let us also set the
cavity transmittivity atT50.05, which would yield a cavity
decay rate of about 0.5 GHz and thus fix the time unit
about 2 ns. The pump laser could be a frequency doubled
Nd:YAG ~yttrium aluminum garnet!, emitting at 532 nm
with an average power of about 15 W that we suppose to
uniformly distributed over a 4.8-mm-diameter spot, so t
the intensity isI 583 W/cm2. The amplitude of the inpu
electric field provided is thenE05A2I /e0c.0.25 kV/cm,
(e0 is the vacuum permittivity! which suffices to bring the
OPO to threshold because with these values we can ob

FIG. 8. Variances i j
2 of the spectra detected in different pos

tions (xi ,yj ); i 51, 2, and 3 and j51, and 2 with x15
225, x250, x3525, y1537.5, andy2568.75 and their aver-
age~solid line!. The positions correspond to the symbols: (x1 ,y1)
filled triangle; (x2 ,y1) star; (x3 ,y1) triangle; (x1 ,y2) filled square;
(x2 ,y2) cross; (x3 ,y2) square. The dotted vertical line indicates t
threshold predicted theoretically~see Fig. 3! for the walk-off pa-
rameter used (r150.15).
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F.K0uE0u.1 if D0.0 ~small pump detuning and mismatc
are conditions which can be easily attained in real exp
ments!. Let us seta1.1 which yields a normalized beam
diameter of 80 scaled units, and thus fix the spatial unitDx
5Dy to about 60mm. This diffraction coefficient is larger
than that used in the numerical examples of Sec. IV,
noise-sustained structures can be found also in this case.
fraction affects the wavelengthlc52p/kc of the observed
stripes through Eq.~12! as well as the threshold of the abs
lute instability. In particular, the largera1, the smaller the
threshold. However, with a walk-off angle on the order
0.1 mrad we also obtainr1.0.27, i.e., larger than that use
in the numerical example shown. If the FH detuning is s
set toD1520.25, the region of the convective instability
the same as fora150.25,r150.15. In fact, Eq.~21! @and Eq.
~12! for D1 fixed# shows that the position of the absolute
unstable threshold actually depends on the ratior1

2/a1, which
is the same for the numerical resolution and this estimat
In particular, this example yields that the absolute and c
vective threshold are separated by 0.525 W. Finally, in t
example, seven stripes can be accommodated in the pum
region. Therefore, an experimental observation of noi
sustained structures in OPO’s seems feasible, on the bas
the theory, the numerical resolutions, and the available d
on realizable experimental set-up.

As a final remark, we want to stress the main reasons
justify this statement. The walk-off is an intrinsic effect o
parametric down-conversion as soon as birefringent me
are used@53#. The convective regime is the first to appe
above threshold; there is no particular power requirem
except that of being at the signal~and thus pattern! genera-
tion threshold. The structure is as intense as the one obse
in the absolutely unstable regime, so that it can be dire
detected, noise having been amplified many orders of m
nitude. The direct detection of the NF and FF shows cl
fingerprints of the nature of the pattern, and thus allows o
to distinguish when a noise- or dynamics-sustained patter
observed. Finally, even if direct observation is not possib
the time spectral analysis is straightforwardly simple, sinc
relies on the detection of a well developed optical field
tensity oscillation@54#. It is also worth mentioning that in the
case of drift instabilities with Kerr-like nonlinearities, th
existence of ‘‘broad frequency distributions’’ in the spectr
analysis@6#, ‘‘small oscillations confused with noise’’@9#,
and ‘‘random pattern precursors’’@55# have been already
reported but not fully investigated and explained.

In conclusion we have theoretically demonstrated the
istence of noise-sustained structures in a model of typ
degenerate optical parametric oscillators for negative sig
detuning. We analyzed in detail the formation of transver
two-dimensional structures in the optical field intensity. Sp
cial features appear, due to the two-dimensional mode
and the presence of the walk-off. The latter effect causes
instability to be convective, just above threshold, and th
noise-sustained structures can be found in this regime.
identified the main features that help to distinguish t
dynamics-sustained structure in the absolutely unstable
gime from the noise-sustained pattern in the convectiv
unstable regime. A simple direct detection of the near and
fields or a time-spectral analysis are apt to discern the na
of the pattern under investigation.
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The walk-off also breaks the rotational symmetry of t
system, causing a preferential orientation of the pattern
cause of the advection-spreading balance mechanism, w
is peculiar of a convective system. This symmetry break
also manifests itself in the coexistence of absolutely and c
vectively unstable modes for pump amplitudes slightly abo
the absolute instability threshold.

It is well known that OPO’s are devices suitable for t
generation of nonclassical states of light. Here we dem
strated that quantum noise can be amplified several orde
magnitude, and can in principle give rise to a macrosco
pattern in the convective regime. Thus convective noi
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sustained structures may become a paradigmatic examp
search for quantum statistics and quantum correlations
macroscopic, spatially structured optical systems.

We point out that the results of this analysis, as well
the methods used, are very general, and can be used
reference to study pattern formation in convective, 2D s
tems, in other branches of physics.
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